MOTIVATION OF RESISTANCE TO CHANGE IN CREATIVE RESEARCH TEAMS: ISSUES OF SCIENTISTS' TYPOLOGY

Anna Maltseva 1, Elena Klyushnikova 2
Lurye Scientific and Methodological Center for Higher School Innovative Activity of Tver State University, Russia.

ABSTRACT
The work substantiated the role of motivational factors in research activity as an important classification criterion in the degree and forms of resistance to change in organizations. The authors identified seven types of researchers based on the study of key motivational factors in accordance with their activities. They served as the basis for a typology of the attitude of scientific workers to the changes and development of the most appropriate methods to reduce them.

Keywords: Resistance to Change, Motivation, Researcher, Creative Activity, Research Team, Typology Of Researchers

INTRODUCTION
Modern organizations, including creative and scientific, which are the subjects of this study, in response to market demands and taking into account the dynamic transformation of the external environment have to implement various organizational changes (conversions), such as adaptation, reorganization, reform, restructuring and transformation. These categories differentiate organizational changes according to their level of radicality, complexity, duration and other parameters. Organizations have to change and adapt to new conditions in order to operate successfully in acute competition for resources and capital, primarily intellectual and creative.

One of the difficult problems in the process of managing organizational change is the resistance of staff to the upcoming change (Slattery, 2013). Resistances essentially complicate carrying out of some conversion and capable to nullify efforts to implement change in the case of absence of special measures to manage them and its consequences (Brown and Humphreys, 2003).

Despite favorable preconditions and the need for change in creative research field the mentality of the academic environment which main characteristic is openness to innovations, however, is also a cause of resistance to even the most necessary changes. An example is the case of the reform of the Russian Academy of Sciences which has caused unrest and discontent of Russian scientists: in some cases - well-founded, in others - unfounded.

Reasons for resistance to change were investigated in the works of various authors. So, Greenberg and Barling (1999), Rosenberg (2011), Hossein (2011) indicated the presence of a personal (individual, psychological) and institutional (defined by the specific organization, company) reasons.

In the works of Rosenberg (2011) additionally outlined the factors of resistance to related with the peculiarities of the process of changes and their nature.

George and Jones (1996) and Hossein (2011) substantiated the presence of specific factors of a small group forming processes resistance to change in organizations.
In accordance with the specificity of creative research teams all these factors can have a significant impact on the result of local reforms and organizational transformations. In the organizations which the basis is creative intellectual work resistances to change significantly reduce research productivity and can have a significant impact on the results of the organization as a whole.

Obviously, the management of resistance to change in creative research teams is an important task and requires a detailed study because the research teams, the creative class play an special role in modern society. The increasing significance of their contribution to the gross domestic product of countries, primarily in developed innovative economy, is noted.

The purpose of this research is to investigate the impact of personal activities motivational factors of creative research teams staff on the degree and form of resistance to change, to form the classification of researchers types depending on the key motivational factors of activity and level of resistance to change, and to develop the recommended methods for their elimination in accordance with a specific types of researchers in different cases.

MATERIALS AND METHODS
In the study, classical and current approaches to definition of researchers motivation and the results of sociological surveys of leading Russian organizations in field of this investigation were examined. As baseline methods theoretical, content analysis, generalization, systematization and classification were used.

The motivation, qualification and research productivity in the aggregate are the main problem of personnel management, and the creation of conditions for more complete identification of its labor potential becomes critical.

In studies of Cole and Cole (1973) reviewed the theory of the "divine spark". In accordance with this concept the most productive scientific workers are motivated by an inner desire for scientific activities and a sincere love the job.

The theory of accumulation of advantage in combination with reinforcement theory (Merton, 1968) describes a different approach to identifying key factors of motivation. Scientists who get remuneration for their work become more productive while the productivity of scientists who do not get it is reduced.

Stephan and Levin (1992) developed the theory of utility maximization which key thesis is that every year the reward for research is reduced, i.e., all scientists have a tendency to reduce the amount of effort on research over time because they believe that other tasks are more profitable.

The three main theories of research productivity are complementary rather than competing: in varying degrees they are all applicable to the academic profession.

Thus, the most important task of personnel management in scientific and creative organizations is to stimulate as specific research workers and research teams to a systematic and productive activities, as in science more than in any other field, success depends on individual abilities of researchers, the extent of their preparation and motivation to work. Issues of motivation for personal engaged in research activities play a much greater role than for other employees.

The principles developed by F. W. Taylor in his "system of squeezing sweat" is completely unacceptable for researchers.

It is difficult to regulate the workers engaged in creative research activities. The process of monitoring these workers is also complicated. Working time of research personnel due to the nature of its work cannot be regulated in an order.
Research activity essentially differs from production. Accordingly, the motivation of researchers is based not only on financial incentives. In many cases there are elevated needs: knowledge, authority, creativity. People are driven by moral ideals, the great purposes, moral belief, habits, traditions, fashion etc.

However, the role of financial incentives should not be to downplay. When wages are excessively low, the money is encouraged to a greater number of employees and become one of the main factors of motivation; other motivation factors play a certain value only for a small number of scientists.

According to the results of a sociological survey conducted by the Centre for science research and statistics (Ilyenkova, 2010) the most common in the general system of work values and motivations is the attitude of scientists to their work, as a source of livelihood (42% of respondents). This position demonstrates the instrumental type of motivation which refers to the work as a means to meet the physiological needs, human survival (need for food, clothing, housing). Attitude to work as an independent activity, i.e. motivation of the highest order (work is important and interesting, regardless of payment) found in 29% of the interviewed personal. Approximately for every seventh respondent (15%) work is important but there are other, equally important interests. The share of respondents who consider that work is an unpleasant duty is 0.6%.

The perception of scientific work varies considerably from academic degrees: for doctors of science this is clearly intrinsically valuable activities (64% of them), and for those who do not have degree — instrumental value (respectively 48%). For candidates of science attraction of scientific work is less clear but still higher than the average for the sample, the share of highly evaluating the interest to job is 40%.

According to the results of other national survey conducted by the HSE (https://www.hse.ru/org/hse/aup/research/monitoring/mnk) the leading motives of the work in the field of science are a curiosity and interest in solving problems. Among the reasons that prompted the respondents to research the first place was "creative and innovative nature of the work", as stated by 26.6% of respondents, the second is "own research interest" (18.9%), the third is "possibility of professional growth" (14.2%), the fourth is "independence" (8.9%). While financial motives ranked last places in the list of the twelve proposed options of answers. So, 3.1% of respondents were taken into account the bonuses and allowances in the choice of profession, 6.1% hoped on a stable salary.

At the same time, a major role for investigation work effectiveness, according to respondents, plays foundation, grant support for research projects (14.5%) and purchase of necessary equipment (12.6%) (https://iq.hse.ru/news/177665839.html).

Opportunities of internships in leading foreign scientific centers and universities and also publications in foreign rating journals and personal participation in seminars and conferences are significant for only 4% of respondents.

In the research of Leonov (2013) two generalized principle of effective reward of the scientist causing the motivation to work were determined: the principle of "pure" science - recognition from colleagues (60%) and the principle of "postacademic" science - financial rewards (45%).

In accordance with sociological study of the motivation of young scientists of the Ural Federal district (Skrauch and Mekhrishvili, 2013) the priority motives of professional research activities preferences are: the interest in their work, profession is 71.2%; free mode is 39.0%; the attractive environment, community - 33.7%; the prestige of a scientific career - 22.9%; hopes for improvement in science sphere - 22.9%; belonging to the scientific school - 14.6%; the feeling of "own team" - 12.7%; extra-money-side - 12.2%; the involvement in international relations - 11.2%; a habit, a reluctance to move - 6.3%; difficulties in change of activities scope - 5.4%; good earnings from research activities - 3.4%.
Among the negative aspects reported by respondents financial problems (need for additional treatment) are the first place. It was noted by 55.3% of respondents. This is further evidence of the role of material factors in the motivation of researchers.

In accordance with the data of other sociological studies conducted by the Information and analytical center of the Russian Academy of education (Sobkin et al, 2017) the third largest position in the structure of researcher's life values holds financial well-being (49.6%), the fifth - a successful scientific activity (28.6%), the sixth - knowledge, broaden their horizons (24.8%), the eighth - freedom, independence, autonomy (24.5%). This confirms the thesis about the increasing importance of financial incentives as a motivational factor for researchers.

It is noted that for scientists of the older generation (over 51 years) the importance of values in life such as successful scientific activity, development of creative potential, active life clearly increases. In addition, the successful research activities for researchers which h-index less than 2 is significantly less important. This further supports the thesis that questions of self-realization in the profession become more relevant in the presence of certain achievements at the moment.

The increasing role of financial factors is also registered in the studies of foreign scientists. So, there were justified financial interest in the choice of research careers in the work of Turpin et al (2016) and the effectiveness of the system of financial incentives of employees in the work Huang, H.-Y. et al (2010), Lacetera and Zirulia (2012) determined that the relationship between the intensity and the power of incentives is U-shaped with the exact shape depending on the degree of knowledge spillovers. They also have shown that the performance-contingent pay for both applied and basic research increases with the non-pecuniary benefits that scientists obtain from research while the fixed component decreases.

The above theories and the results of sociological surveys became the basis for the formation of the author's classification of researchers according to the type of motivation which plays a significant role in the aspect of resistance to change.

RESULTS

The study based on the research results of Centre for science research and statistics (Cole and Cole, 1973) was identified seven types of scientists that demonstrate certain motivational features. Their detailed characteristics are given below.

- the first type: dominate the interest in work and the desire of creative self-realization with a minimum interest payment of labor ("self-realization");
- the second type: the orientation on the interesting work combined with the attract of a good salary ("work and earnings");
- the third type: priority of other interests and inquiries while understanding the importance of the work ("other interests");
- the fourth type: interest to good earnings combined with the awareness of the benefits of their labor to society ("earnings and usefulness");
- the fifth type: orientation on good earnings combined with the interest to career ("earnings and career");
- the sixth type: attitude to work as forced unpleasant necessary ("painful duty");
- the seventh type: the motivation of a mixed type ("mixed motivation").
In the study the incorporation of scientists to a different type of attitude to changes (acceptance or rejection of changes, hidden or open demonstration of the attitude to changes) were determined. The combination of these factors allowed to identify four types of attitudes to changes (Volodarskaya, 2016):

- "supporters" — the adoption to changes with open positive attitude to change;
- "enemies" — the failure to changes with open negative attitude to change;
- "passive supporters" — the adoption to changes with their hidden support;
- "dangerous elements" — changes are not accepted with hidden subjective position.

Broadcasting the problem of motivation on the issues of resistance to change by the researcher teams the following conclusions were given.

1. Scientists of the first classic type are most resistant to change ("enemies")

Scientists of the classical type, the true enthusiasts, "fans" of science is dominated by the interest and the desire of creative self-realization with a minimum interest to the payment. Representatives of this type of scientists belong mainly to the scientific elite of their organizations (administration, managers, chiefs, leading and senior researchers).

For a genuine scientist self realization and satisfaction of their research interests first are most important. In their list of priorities salary, as indicated above, mostly is in last place. They need the money only to implement their research projects.

Scientists of first (classic) type often consider themselves to be optimists, confident in the future, thus, resist change frequently than all of the others. The priority of their personal fulfillment over the interests of the organization leads to resistance even desirable changes if they are not comfortable.

2. Scientists of the second type resist to change depending on their nature and the intended outcome ("enemies")

Scientists focused on interesting work combined with the interest in the good earnings are the optimists, however, in this respect somewhat inferior to the representatives of the first type of motivation.

Representatives of this type quite loyal to the reforms but are similar to the first type and also resist to change in the case if acutely aware of the lack of their implementation feasibility for their own careers and prospects in work. Scientists of this type are supporters or initiators of the resistance to change.

3. Scientists who have other priority interests and needs with the understanding of the work importance moderately resistant to change or, in some cases, are supporters of the resistance ("dangerous elements")

According to their official status representatives of this type are mainly scientific and research assistants, engineers, programmers, technicians. They show a medium optimism and slightly lower than average confidence in the future and moderately resistant to change. In some cases they can be influenced by the "senior" colleagues (in position, status, authority) and enter the number of supporters of the resistance to change.

4. Scientists who supreme value of scientific work is the usefulness for society which logically combined with the need for good income most likely support changes ("supporters")

The higher proportion of managers, principal and senior engineers is in this group. In their warehouse these people are more optimistic but at the same time they have missing confidence in the future more
than others. They are most likely to support changes that can be have a positive impact on their future work and incomes.

5. Representatives which interest is mostly the career in close combination with a good salary and an interesting work, adapt or, in most cases, support changes ("supporters")

In contrast to the fourth group where focused intellectual "color" of engineering and technical personnel, there are their average composition, i.e. scientific and research assistants, engineers, programmers, technicians, mostly without scientific degree. For representatives of this group more than others, the continuation of a scientific career is connected with hopes for improvement and additional capabilities, they have adapted to new conditions and in most cases support changes.

6. Representatives which attitude to work as to unpleasant duties, in some cases, resist change or adapt to them ("passive supporters").

In this type of motivation the attitude to work as an unpleasant duty is dominated that, in general, is not typical for the scientific sphere.

The highest share of pessimists is among them; they are less confident in the future, and their reaction to change can be followed solely on the basis of internal "attitude of the worst", which implies a resistance to change even in cases of their objective necessity and involvement of employees into this process.

Sometimes they are indifferent regarding internal processes in the organization as well as to the work itself. In such situation employees adapt to change and are not their clear opponents.

7. Representatives which characterize by the combined motivation moderately resist to change or vary their attitude towards them depending on the specific situation and forms of their realization ("passive supporters")

Most of them do not believe in the future although consider themselves as optimists. Similarly to representatives of the third group they are moderately resist to change or support them as in fourth and fifth types and can vary their attitude towards them depending on the specific situation and forms of their implementation.

The type of scientists at the motivational factors of the resistance to change indicating the characteristics of their manifestations forms (Carr and Brower, 2000; Fleming and Spicer, 2003) represented in table 1.

<table>
<thead>
<tr>
<th>Scientists' typology on the motivational features</th>
<th>Groups of attitude to changes</th>
<th>Most relevant forms of resistance to change</th>
</tr>
</thead>
<tbody>
<tr>
<td>the first type ("self-realization")</td>
<td>enemies</td>
<td>– denial;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– indignation;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– skepticism</td>
</tr>
<tr>
<td>the second type ("work and earnings")</td>
<td>enemies</td>
<td>– denial;</td>
</tr>
</tbody>
</table>

Table 1. The ratio of typology of scientists motivational characteristics and the degree of resistance to change
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Dangerous Elements</th>
<th>Passive Supporters</th>
</tr>
</thead>
<tbody>
<tr>
<td>the third type ("other interests")</td>
<td></td>
<td>avoidance;</td>
<td>avoidance;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>demonstration of incompetence;</td>
<td>demonstration of incompetence;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>indignation;</td>
<td>rationalization;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>skepticism</td>
<td>impatience</td>
</tr>
<tr>
<td>the fourth type ("earnings and usefulness")</td>
<td></td>
<td>indifference;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>avoidance;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>demonstration of incompetence;</td>
<td></td>
</tr>
<tr>
<td>the fifth type ("earnings and career")</td>
<td></td>
<td>demonstration of incompetence;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>skepticism</td>
<td></td>
</tr>
<tr>
<td>the sixth type ("painful duty")</td>
<td></td>
<td>avoidance;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>demonstration of incompetence;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>absenteeism;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rationalization;</td>
<td></td>
</tr>
<tr>
<td>the seventh type ("mixed motivation")</td>
<td></td>
<td>denial;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>indignation;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>skepticism</td>
<td></td>
</tr>
</tbody>
</table>
The graphic interpretation of researchers structure in accordance with the highlighted typology was given\(^1\) (figure 1).

![Figure 1 - Graphical interpretation of the typology of scientists depending on the attitude to change](image)

The types of scientists who resist to change in an open or hidden form are in quadrants I and II respectively. Those who show no or weak resistance to change are in quadrants III and IV. The most numerous group consists of "passive supporters" (III quadrant) due to the complexity, the multidimensionality, the multidimensional nature of a social group as scientists whose attitude to change often depends on the specific situation and the personal psychological/motivational mood to the upcoming changes. The psychological aspect of the implementation process of change/reform is determined by the attitude of scientists to the need for reform, the importance of developing, agreeing on changes and interaction of all actors affected by the changes.

Bejestani (2011) states that, “management is partly science and partly art”. That's why it is equally important to align the selected group of scientists on the motivational characteristics and methods of change management, that is to determine the most effective methods of influence on each of the classification types of scientists (table 2).

Table 2. The ratio of typology of scientists motivational characteristics and methods of change management

\(^1\) structural shares were determined in accordance with the average of the results of sociological surveys
Scientists' typology on the motivational features

<table>
<thead>
<tr>
<th>Scientists' typology on the motivational features</th>
<th>The most effective methods of change management</th>
</tr>
</thead>
<tbody>
<tr>
<td>the first type ("self-realization")</td>
<td>− information and communication;</td>
</tr>
<tr>
<td></td>
<td>− participation and involvement;</td>
</tr>
<tr>
<td></td>
<td>− negotiations and agreements</td>
</tr>
<tr>
<td>the second type ("work and earnings")</td>
<td>− information and communication;</td>
</tr>
<tr>
<td></td>
<td>− participation and involvement;</td>
</tr>
<tr>
<td></td>
<td>− negotiations and agreements;</td>
</tr>
<tr>
<td></td>
<td>− explicit and implicit coercion</td>
</tr>
<tr>
<td>the third type ("other interests")</td>
<td>− information and communication;</td>
</tr>
<tr>
<td></td>
<td>− participation and involvement</td>
</tr>
<tr>
<td>the fourth type ("earnings and usefulness")</td>
<td>− information and communication;</td>
</tr>
<tr>
<td></td>
<td>− help and support;</td>
</tr>
<tr>
<td></td>
<td>− manipulation and co-optation</td>
</tr>
<tr>
<td>the fifth type ("earnings and career")</td>
<td>− information and communication;</td>
</tr>
<tr>
<td></td>
<td>− help and support;</td>
</tr>
<tr>
<td></td>
<td>− explicit and implicit coercion</td>
</tr>
<tr>
<td>the sixth type ("painful duty")</td>
<td>− information and communication;</td>
</tr>
<tr>
<td></td>
<td>− help and support;</td>
</tr>
<tr>
<td></td>
<td>− negotiations and agreements</td>
</tr>
<tr>
<td>the seventh type ("mixed motivation")</td>
<td>− information and communication;</td>
</tr>
<tr>
<td></td>
<td>− participation and involvement;</td>
</tr>
<tr>
<td></td>
<td>− negotiations and agreements</td>
</tr>
</tbody>
</table>

One of the most common ways to overcome of resistance is the method of "information and communication" which is applicable for all the selected types of scientists. To relieve the tension of
employees the managers need to constantly inform them about transformations in organization with explaining in detail their specifics and implications.

The method of "participation and involvement" is most often applied to four of the seven defined types. If managers explain to employees the benefits of changes and ensure their direct involvement in the ongoing transformations they will make efforts in promoting changes regardless of their motivational values.

Such a method as "help and support" is most applicable to the fourth and fifth types of scientists because they easily adapt to changes and provide an opportunity to be heard and to receive emotional support rather help to overcome likely resistance or to persuade them from the initiators of the changes.

The method of "manipulation and co-optation" is also applicable to the fourth and fifth types of scientists. For the scientists of the fourth type the commitment to the usefulness of his work clearly expressed, they value reliability above all else, so for the initiator of the changes, for example, selective use and deliberate presentation of events in a favorable manner (manipulation) and the provision of such scientists of the key role in the implementation of changes (co-optation) are most effective. The priority value of these scientists make their minds vulnerable to the assessment of the real usefulness of the changes. Taking into account such values as the career this method is accordingly applicable to the scientists of the fifth type. They can safely take the role of leaders in planning and implementation of changes (co-optation).

The method of "explicit and implicit coercion" is most applicable to the researchers of the second and the fifth types.

Scientists of the second type of motivation is consistently aimed at getting high monetary rewards, so the threat of losing their jobs, benefits, etc., or transfer to a lower paying job will help to reduce resistance to change. For scientists of the fifth type a good earnings are also important but there is the main difference from other representatives of science: they have highest rating such value as a safe place of work. So, the threat of losing it will prevent or lessen the resistance to change.

The method of "negotiations and agreements" is most applicable to researchers of the first, second, sixth, seventh types as the method consisting in providing incentives to active or potential opponents of the change which include representatives of all these types.

The use of only one of the following methods of overcoming resistances to change is not effective. Only competent combination of the proposed methods depending on the situation and psychological condition of the stuff of these changes will give the desired results.

DISCUSSION

Summarizing the results of the typological analysis it can be noted that scientific work is a highly motivated human labor. The interest is on one of the leading places in the structure of work values. But not less important (more than half of the participants in the scientific process) is the value of a good income. Thus, an interesting job and a good income are the dominant in the scale of values. It should be noted that such values as usefulness, achievement of results, initiative, possibility of career, for the most part scientists act as secondary in the structure of values in scientific work.

A sharp change of the economic situation in the world, the integration of science into the market has affected the value system. So, the emergence of new and more opportunities leads to an increase the role of the financial factor. This, obviously, could not affect on the set of motivational attitudes of scientists when to the fore the financial needs and professional interests take a secondary place.

Different point of view expressed by Kukonkov in the "Scientists in modern Russia: problems and prospects". The author raises the topic of social stratification including in the Russian science.
Stratification of the scientific community finds expression in the stratification structures of science management which suggests complex nature of the process occurring at both individual and institutional levels covering as individual scientists and scientific institutions.

Topic of bundles were also considered in the work of the Plyusnin "Epistemology and the strategy of scientific search". The author argues that in academic science there is a "new ideal type" of the scientist which corresponds to the new style of professional behavior. If earlier the classic example of the scientist was the activities of "search and production of new knowledge" and, therefore, the main product is a research paper. For the part of academic scientists (definitely not less than 5% of the academic community) the presentation of the obtained new knowledge is no less important now. Its success depends not only on the assessment of the professional community but also from public reaction to it.

Thus, there was a splitting of the scientific community: those who continue to keep the old values of science, lives and works in accordance with them considering themselves as fully human of sciences finds a number of a not less full and staunch in their self-evaluations scientist but working in a different science with different goals, values and behavior.

New style of behavior of the scientist is genetically linked not so much with the process of production of scientific knowledge, as is the case for the classical scientist type, but with thoughtful and various procedures for the presentation of the knowledge to the society.

New trends in science have largely focused on non-classical methodology of scientific research. This methodology requires a different system of values, respectively, a strategy of scientific research and other style of professional conduct of the scientist.

These viewpoints do not only further focus attention on a discussion of the author's approach to motivation researchers but also to demonstrate the expression of resistance to change in the scientific community which individual members actively seek to preserve the current up to the last moment a system of the science values and research work, to prevent a significant inclusion in the market economy as a full participant. All these points should also be considered for effective reform of science which is inevitable in a changing external environment.

CONCLUSION

Thus, every organizational change or reform in particular requires awareness that is the dissemination of information about reform in society, the discussion which will take time and effort on the part of the developers (Harkness, 2000). For reducing resistance to change by academic staff due to the nature of their work it is equally important to provide the opportunity to participate in the planning of organizational changes for the free expression of its attitude to innovation, the formation of a ownership sense to potential problems and changes that will enhance the level of understanding and acceptance of the changes as the result (Gondo et al, 2013).

Due to the specific motivational characteristics of creative research groups an additional competent motivational support of the implementing change process is necessary because it is a powerful incentive to efficient operation of a scientific team or organization.

The nature of this motivation depends on the group of attitude to changes. Each type corresponds to the most typical forms of resistance to various changes and to the most effective methods of change management explained the reasons for this conformity. In accordance with the proposed typology of researchers the choice of method of organizational changes management can be used in the practice of management of research organizations and will be allow to achieve maximum effect in their implementation taking into account possible resistance from the staff.

ACKNOWLEDGEMENTS
The article is the result of the research funded by the Ministry of Education and Science of the Russian Federation within the research project "Change and Development Management of Scientific Organizations in the Context of the State Policy of their Restructuring" implemented by Tver State University.

REFERENCES
Monitoring of the labor market of the highest qualification’s scientific personnel [Electronic resource]. URL: https://www.hse.ru/org/hse/aup/research/monitoring/mnk
Self-realization is more important than wages [Electronic resource]. URL: https://iq.hse.ru/news/177665839.html (date of access: August 1, 2017).